link1s.site

Doctors visited the White House 8 times? White House: Biden did not receive treatment for Parkinson's disease

White House spokeswoman Karina Jean-Pierre denied a report in the U.S. media on the 8th that President Joseph Biden did not receive treatment for Parkinson's disease.

Biden had the first televised debate of the 2024 presidential election with Republican opponent Donald Trump on June 27, and his poor performance on the spot triggered discussions about his physical condition. The New York Times reported that a doctor specializing in the treatment of Parkinson's disease had "visited" the White House eight times from August last year to March this year.

Facing the media's questions about Biden's health, Jean-Pierre asked and answered himself at a regular White House press conference on the 8th: "Has the president received treatment for Parkinson's disease? No. Is he currently receiving treatment for Parkinson's disease? No, he is not. Is he taking medication for Parkinson's disease? No."

Jean-Pierre said Biden had seen a neurologist three times, all related to his annual physical examination.

She also took out the report issued by the doctor after Biden's most recent physical examination in February this year. The report said, "An extremely detailed neurological examination was once again reassuring" because no symptoms consistent with stroke, multiple sclerosis or Parkinson's disease were found.

The doctor who went to the White House mentioned by the New York Times is Kevin Kanal, a neurology and movement disorder expert at the Walter Reed National Military Medical Center in Maryland and an authority on Parkinson's disease.

Jean-Pierre suggested that the doctor might have come to treat military personnel on duty at the White House.

It may be getting harder to leave your smart wearable for the sake of your health
The world's first portable electrocardiograph was an 85-pound backpack, and now a 10-gram patch attached to your chest can transmit electrocardiograms uninterrupted for two weeks. The Apple Watch, which is worn by an estimated 100 million people, can send a text message to alert people when their heartbeat is irregular. Wearable sensors on the arms, wrists and fingers can now report arrhythmias, blood sugar levels, blood oxygen and other health indicators. Medical journals have also proposed a more ambitious vision - wearable devices can monitor patients with chronic diseases, eliminating the need for frequent hospital visits. They can spot potential health problems before a stroke or diabetes develops. The forces of health technology and wearables are converging. Tech giants like Apple (AAPL) and Alphabet's (GOOGL) Google are adding health features to their products. Medical technologists like electrocardiogram patch maker iRhythm Technologies or blood sugar monitor makers DexCom (DXCM) and Abbott Laboratories (ABT) are taking their devices beyond the clinic. "In the sensor world, people started on the consumer side and wanted to get into health care," said Kevin Sayer, chief executive of Decon Medical. "In health care, we're trying to be more consumer oriented, and I think all of those things are sort of colliding." Early bets favored the tech giants, with every health-related announcement from Apple, Google or Samsung Electronics hitting medical tech stocks. But changing doctors' practices will also require sustained investment in clinical trials. Big tech companies have cut back on investments in health care. Now it seems that medical technologists will be at the vanguard of the digital health revolution - with smartwatches and smart rings bringing them more customers who need to be diagnosed. Blake Goodner, co-founder of Bridger Management, a hedge fund focused on health care, said: "A group of medtech companies focused on digital health are maturing and reaching a scale where they can not only be profitable but also make investments to compete with larger tech companies." Tech giants aren't getting out of the health business. Apple's smartwatch has an electronic heart rate sensor that generates a single-point electrocardiogram, a wrist temperature sensor, and an accelerometer that can detect violent falls. Hundreds of millions of people are wearing smartwatches with health features from Apple or its rivals Samsung and Garmin.
"Corrupt Politicians GPT" "Fiscal Bill GPT", Kenyan protesters use AI to "protest"
In the past few weeks of anti-government activities in Kenya, AI tools have been creatively used by protesters to serve protests. According to the US "Flag" News Agency on July 5, protests in Kenya triggered by the 2024 fiscal bill are still continuing. In the past few weeks, Kenyan protesters, mainly young people, have creatively developed a series of AI tools to assist anti-government activities. The Kenyan government expressed concern about the risks associated with the use of AI tools in protests. Kelvin Onkundi, a software engineer in Kenya, developed the "Fiscal Bill GPT", which operates similarly to ChatGPT and can receive questions about the fiscal bill and generate responses. Martin Siele, a reporter from the "Flag" News Agency, analyzed: "The 'Fiscal Bill GPT' can convert professional terms in many legislative fields into easy-to-understand information for protesters, helping Kenyans understand the potential impact of the fiscal bill." Another software engineer, Marion Kavengi, developed the "SHIF GPT" to provide Kenyans with information about the upcoming Social Health Insurance Fund (SHIF). In addition to AI tools designed to help people understand controversial policies, protesters have also developed "Corrupt Politicians GPT" to assist protest demonstrations. After entering the name of a politician on the platform, the platform will generate a list of corruption scandals about the politician in chronological order. Developer BenwithSon wrote on the social platform X on June 28: "'Corrupt Politicians GPT' allows people to search for any scandal related to any politician. I have seen some leaders stand at the forefront of the political arena, but they are corrupt behind the scenes." Kenyan Chief Minister and Foreign Minister Mudavadi issued a communiqué to ambassadors of various countries in Nairobi on July 2 local time on protests and relevant government measures, expressing concerns about the use of AI and false information in protests. Mudavadi said: "AI technology is used by people with ulterior motives, which will fill the global information system with false narratives." The Kenya Times reported on June 30 that AI technology enables people to force the government to increase transparency and strengthen accountability, and its role in Kenyan political activities is becoming increasingly prominent. Martin Siller believes that AI is reshaping African political behavior in many ways. AI is a new tool for both governments and opposition parties in Africa, but Kenya is one of the African countries with the most developers, and its young protesters are particularly good at using AI technology to fight the government. The 2024 fiscal bill voted and passed by the Kenyan National Assembly on June 25 clearly stated that additional taxes will be levied to repay the interest on high sovereign debt, triggering large-scale demonstrations. After President Ruto announced the withdrawal of the tax increase bill on the evening of the 26th, demonstrations in many parts of Kenya continued. According to Reuters on July 3, Kenyan anti-government protesters are re-adjusting their activities to prevent the protests from turning into violent incidents.
Exclusive: Nornickel in talks with China Copper to move smelting plant to China, sources say
HONG KONG, July 9 (Reuters) - Nornickel (GMKN.MM), opens new tab is in talks with China Copper to form a joint venture that would allow the Russian mining giant to move its entire copper smelting base to China, four sources with knowledge of the matter told Reuters. If the move goes ahead, it would mark Russia's first uprooting of a domestic plant since the U.S. and Britain banned metal exchanges from accepting new aluminium, copper and nickel produced by Russia. It also means Nornickel's copper will be produced within the country where it is most consumed. Nornickel said in April it planned to close its Arctic facility and build a new plant in China with an unnamed partner. Executives at China Copper, owned by the world's largest aluminium producer Chinalco (601600.SS), opens new tab, flew to Moscow in June to discuss a possible joint venture, one of the sources said, adding that details of the structure and investment are still under discussion. Nornickel declined to comment. Chinalco and China Copper did not respond to requests for comment via email and phone. Sites being considered in China include Fangchenggang and Qinzhou in the Guangxi region, the two sources said, with another source saying Qingdao in Shandong province was also possible. A decision on a joint venture will be made over the next few months, a fifth source said, adding that Nornickel's Chinese output is likely to be consumed domestically. The new facility will have capacity to produce 450,000 tonnes of copper annually, two of the sources said, amounting to around 2% of global mined supplies estimated at around 22 million metric tons this year. Nornickel, which according to its annual report produced 425,400 tonnes of refined copper last year, processed all of its concentrates in 2023 at the Arctic plant, its only operation producing finished copper suitable for delivery to exchanges.
ChatGPT: Explained to Kids(How ChatGPT works)
Chat means chat, and GPT is the acronym for Gene Rate Pre trained Transformer. Genrative means generation, and its function is to create or produce something new; Pre trained refers to a model of artificial intelligence that is learned from a large amount of textual materials, while Transformer refers to a model of artificial intelligence. Don't worry about T, just focus on the words G and P. We mainly use its Generative function to generate various types of content; But we need to know why it can produce various types of content, and the reason lies in P. Only by learning a large amount of content can we proceed with reproduction. And this kind of learning actually has limitations, which is very natural. For example, if you have learned a lot of knowledge since childhood, can you guarantee that your answer to a question is completely correct? Almost impossible, firstly due to the limitations of knowledge, ChatGPT is no exception, as it is impossible to master all knowledge; The second is the accuracy of knowledge, how to ensure that all knowledge is accurate and error free; The third aspect is the complexity of knowledge, where the same concept is manifested differently in different contexts, making it difficult for even humans to grasp it perfectly, let alone AI. So when we use ChatGPT, we also need to monitor the accuracy of the output content of ChatGPT. It is likely not a problem, but if you want to use it on critical issues, you will need to manually review it again. And now ChatGPT has actually been upgraded twice, one is GPT4 with more accurate answering ability, and the other is the recent GPT Turbo. The current ChatGPT is a large model called multimodality, which differs from the first generation in that it can not only receive and output text, but also other types of input, such as images, documents, videos, etc. The output is also more diverse. In addition to text, it can also output images or files, and so on.
Xinjiang scientists discover plant with potential to survive on Mars
In a groundbreaking discovery, researchers from the Xinjiang Institute of Ecology and Geography of the Chinese Academy of Sciences have found a desert moss species, known as Syntrichia caninervis, that has the potential to survive in the extreme conditions on Mars. The Global Times learned from the institute that during the third Xinjiang scientific expedition, the research team focused on studying the desert moss and found that it not only challenges people's understanding of the tolerance of organisms in extreme environments, but also demonstrates the ability to survive and regenerate under simulated Martian conditions. Supported by the Xinjiang scientific expedition project, researchers Li Xiaoshuang, Zhang Daoyuan and Zhang Yuanming from the Xinjiang Institute of Ecology and Geography and Kuang Tingyun, an academician from the Chinese Academy of Sciences, concentrated on studying the "pioneer species" Syntrichia caninervis in an extreme desert environment, according to the institute in an article it sent to the Global Times on Sunday. Through scientific experiments, the researchers systematically proved that the moss can tolerate over 98 percent cell dehydration, survive at temperatures as low as -196 C without dying, withstand over 5000Gy of gamma radiation without perishing, and quickly recover, turn green, and resume growth, showcasing extraordinary resilience. These findings push the boundaries of human knowledge on the tolerance of organisms in extreme environments. Furthermore, the research revealed that under simulated Martian conditions with multiple adversities, Syntrichia caninervis can still survive and regenerate when returned to suitable conditions. This marks the first report of higher plants surviving under simulated Martian conditions. The research team also identified unique characteristics of Syntrichia caninervis. Its overlapping leaves reduce water evaporation, while the white tips of the leaves reflect intense sunlight. Additionally, the innovative "top-down" water absorption mode of the white tips efficiently collects and transports water from the atmosphere. Moreover, the moss can enter a selective metabolic dormancy state in adverse environments and rapidly provide the energy needed for recovery when its surrounding environment improves. Based on the extreme environmental tolerance of Syntrichia caninervis, the research team plans to conduct experiments on spacecraft to monitor the survival response and adaptation capabilities of the species under microgravity and various ionizing radiation adversities. They aim to unravel the physiological and molecular basis of the moss and explore the key life tolerance regulatory mechanisms, laying the foundation for future applications of Syntrichia caninervis in outer space colonization.