link1s.site

How China can transform from passive to active amid US chip curbs

On Monday, executives from the three major chip giants in the US - Intel, Qualcomm, and Nvidia - met with US officials, including Antony Blinken, to voice their opposition to the Biden administration's plan of imposing further restrictions on chip sales to Chinese companies and investments in China. The Semiconductor Industry Association also released a similar statement, opposing the exclusion of US semiconductor companies from the Chinese market.

First of all, we mustn't believe that the appeals of these companies and industry associations will collectively change the determination of US political elites to stifle China's progress. These US elites are very fearful of China's rapid development, and they see "chip chokehold" as a new discovery and a successful tactic formed under US leadership and with the cooperation of allies.

Currently, the chip industry is the most complex technology in human history, with only a few companies being at the forefront. They are mainly from the Netherlands, Taiwan island, South Korea, and Japan, most of which are in the Western Pacific. These countries and regions are heavily influenced by the US. Although these companies have their own expertise, they still use some American technologies in their products. Therefore, Washington quickly persuaded them to form an alliance to collectively prevent the Chinese mainland from obtaining chips and manufacturing technology. Washington is proud of this and wants to continuously tighten the noose on China.

The New York Times directly titled an article "'An Act of War': Inside America's Silicon Blockade Against China, " in which an American AI expert, Gregory Allen, publicly claimed that this is an act of war against China. He further stated that there are two dates that will echo in history from 2022: The first is February 24, when the Russia-Ukraine conflict broke out, and the second is October 7, when the US imposed a sweeping set of export controls on selling microchips to China.

China must abandon its illusions and launch a challenging and effective counterattack. We already have the capability to produce 28nm chips, and we can use "small chip" technology to assemble small semiconductors into a more powerful "brain," exploring 14nm or even 7nm. Additionally, China is the world's largest commercial market for commodity semiconductors. Last year, semiconductor procurement in China amounted to $180 billion, surpassing one-third of the global total. In the past, China had been faced with the choice between independent innovation and external purchases. Due to the high returns from external purchases, it is easy for it to become the overwhelming choice over independent research and development. However, now the US is gradually blocking the option of external purchases, and China has no strategic choice but to independently innovate, which in turn puts tremendous pressure on American companies.

Scientists generally expect that, although China may take some detours, such as recently apprehending several company leaders who fraudulently obtained subsidies from national semiconductor policies, China has the ability to gradually overcome the chip difficulties. And we will form our own breakthroughs and industrial chain, which is expected to put quite a lot of pressure on US companies. If domestic firms acquire half of China's $180 billion per year in chip acquisitions, this would provide a significant boost for the industry as a whole and help it advance steadily.

The New York Times refers to the battle on chips as a bet by Washington. "If the controls are successful, they could handicap China for a generation; if they fail, they may backfire spectacularly, hastening the very future the United States is trying desperately to avoid," it argued. Whether it is a war or a game, when the future is uncertain, what US companies hope for most of all is that they can sell simplified versions of high-end chips to China, so that the option of external purchases by China continues to exist and remains attractive. This can not only maintain the interests of the US companies, enabling them to obtain sufficient funds to develop more advanced technologies, but also disrupt China's plans for independent innovation.

This idea is entirely based on their own commercial interests and also has a certain political and national strategic appeal. Hence, there is no shortage of supporters within the US government. US Secretary of the Treasury Janet Yellen seems to be one of them, as she has repeatedly stated that the US' restrictions on China will not "fundamentally" hurt China, but will only be "narrowly targeted." The US will balance its strict suppression on China from the perspective of maintaining its technological hegemony, while also leaving some room for China, in order to undermine China's determination to counterattack in terms of independent innovation.

China needs to use this mentality of the US to its advantage. On the one hand, China should continue to purchase US chips to maintain its economic fundamentals, and on the other hand, it should firmly support the development of domestic semiconductor companies from both financial and market perspectives. If China were to continue relying on exploiting the gaps in US chip policies in the long term, akin to a dependency on opium, it would only serve to weaken China further as it becomes increasingly addicted. China's market is extremely vast, and its innovation capabilities are generally improving and expanding. Although the chip industry is highly advanced, if there is one country that can win this counterattack, it is China. As long as we resolutely continue on the path of independent innovation, this road will definitely become wider. Various breakthroughs and turning points that are unimaginable today may soon occur.

Samsung hit the biggest strike! Over 6,500 people attended.
More than 6,500 employees at South Korea's Samsung Electronics began a three-day mass strike on Monday (July 8), demanding an extra day of paid annual leave, higher pay raises and changes to the way performance bonuses are currently calculated. This is the largest organized strike in Samsung Electronics' more than half century of existence, and the union said that if this strike does not push employees' demands to be met, a new strike may be called. One of the core issues of the current dispute between the labor union and Samsung Electronics is raising wages and increasing the number of paid vacation days. The second demand is a pay rise. The union originally wanted a pay rise of more than 3% for its 855 employees, but last week they changed their demand to include all employees (rather than just 855). The third issue involves performance bonuses linked to Samsung's outsized profits - chip workers did not receive the bonuses last year when Samsung lost about Won15tn and, according to unions, fear they will still not get the money even if the company manages to turn around this year.
Google extends Linux kernel support to 4 years
According to AndroidAuthority, the Linux kernel used by Android devices is mostly derived from Google's Android Universal Kernel (ACK) branch, which is created from the Android mainline kernel branch when new LTS versions are released upstream. For example, when kernel version 6.6 is announced as the latest LTS release, an ACK branch for Android15-6.6 appears shortly after, with the "android15" in the name referring to the Android version of the kernel (in this case, Android 15). Google maintains its own set of LTS kernel branches for three main reasons. First, Google can integrate upstream features that have not yet been released into the ACK branch by backporting or picking, so as to meet the specific needs of Android. Second, Google can include some features that are being developed upstream in the ACK branch ahead of time, making it available for Android devices as early as possible. Finally, Google can add some vendor or original equipment manufacturer (OEM) features for other Android partners to use. Once created, Google continues to update the ACK branch to include not only bug fixes for Android specific code, but also to integrate the LTS merge content of the upstream kernel branch. For example, the Linux kernel vulnerability disclosed in the July 2024 Android security bulletin will be fixed through these updates. However, it is not easy to distinguish a bug fix from other bug fixes, as a patch that fixes a bug may also accidentally plug a security vulnerability that the submitter did not know about or chose not to disclose. Google does its best to recognize this, but it inevitably misses the mark, resulting in bug fixes for the upstream Linux kernel being released months before Android devices. As a result, Google has been urging Android vendors to regularly update the LTS kernel to avoid being caught off guard by unexpectedly disclosed security vulnerabilities. Clearly, the LTS version of the Linux kernel is critical to the security of Android devices, helping Google and vendors deal with known and unknown security vulnerabilities. The longer the support period, the more timely security updates Google and vendors can provide to devices.
Avi Bruce appointed as head of IDF Central Command
On the evening of July 8, local time, the Israel Defense Forces issued a statement saying that Major General Avi Bluth replaced Yehuda Fox as the commander of the Israeli Central Command. Earlier that day, the Israeli army held a handover ceremony, which was presided over by the Israeli Chief of Staff Halevy. Avi Bluth joined the Israel Defense Forces in 1993 and commanded the Israeli military operations in the West Bank. In May this year, Bruce was promoted to major general and served as a military commander in the Israeli Central Command. CCTV reporters learned that in late April this year, Yehuda Fox, then commander of the Israeli Central Command, requested to resign and retire from the army in August this year. Fox had previously stated that he should bear part of the responsibility for the military intelligence failure on October 7 last year, and "must end his term like everyone else." According to the official website of the Israeli Defense Forces, the Central Command is one of the four major commands of the Israeli army, headquartered in Jerusalem, and its responsibility covers nearly one-third of Israel's territory.
The largest password leak in history exposes nearly 10 billion credentials
The largest collection of stolen passwords ever has been leaked to a notorious crime marketplace, according to cybersecurity researchers at Cybernews. This leak, dubbed RockYou2024 by its original poster “ObamaCare,” holds a file containing nearly 10 billion unique plaintext passwords. Allegedly gathered from a series of data breaches and hacks accumulated over several years, the passwords were posted on July 4th and hailed as the most extensive collection of stolen and leaked credentials ever seen on the forum. “In its essence, the RockYou2024 leak is a compilation of real-world passwords used by individuals all over the world,” the researchers told Cybernews. “Revealing that many passwords for threat actors substantially heightens the risk of credential stuffing attacks.” Credential stuffing attacks are among the most common methods criminals, ransomware affiliates, and state-sponsored hackers use to access services and systems. Threat actors could exploit the RockYou2024 password collection to conduct brute-force attacks against any unprotected system and “gain unauthorized access to various online accounts used by individuals whose passwords are included in the dataset,” the research team said. This could affect online services, cameras and hardware This could affect various targets, from online services to internet-facing cameras and industrial hardware. “Moreover, combined with other leaked databases on hacker forums and marketplaces, which, for example, contain user email addresses and other credentials, RockYou2024 can contribute to a cascade of data breaches, financial frauds, and identity thefts,” the team concluded. However, despite the seriousness of the data leak, it is important to note that RockYou2024 is primarily a compilation of previous password leaks, estimated to contain entries from a total of 4,000 massive databases of stolen credentials, covering at least two decades. This new file notably includes an earlier credentials database known as RockYou2021, which featured 8.4 billion passwords. RockYou2024 added approximately 1.5 billion passwords to the collection, spanning from 2021 through 2024, which, though a massive figure, is only a fraction of the reported 9,948,575,739 passwords in the leak. Thus, users who have changed their passwords since 2021 may not have to panic about a potential breach of their information. That said, the research team at Cybernews stressed the importance of maintaining data security. In response to the leak, they recommend immediately changing the passwords for any accounts associated with the leaked credentials, ensuring each password is strong and unique and not reused across different platforms. Additionally, they advised enabling multi-factor authentication (MFA), which requires an extra form of verification beyond the password, wherever possible, to strengthen cyber security. Lastly, tech users should utilize password manager software, which securely generates and stores complex passwords, mitigating the risk of password reuse across multiple accounts.
Xinjiang scientists discover plant with potential to survive on Mars
In a groundbreaking discovery, researchers from the Xinjiang Institute of Ecology and Geography of the Chinese Academy of Sciences have found a desert moss species, known as Syntrichia caninervis, that has the potential to survive in the extreme conditions on Mars. The Global Times learned from the institute that during the third Xinjiang scientific expedition, the research team focused on studying the desert moss and found that it not only challenges people's understanding of the tolerance of organisms in extreme environments, but also demonstrates the ability to survive and regenerate under simulated Martian conditions. Supported by the Xinjiang scientific expedition project, researchers Li Xiaoshuang, Zhang Daoyuan and Zhang Yuanming from the Xinjiang Institute of Ecology and Geography and Kuang Tingyun, an academician from the Chinese Academy of Sciences, concentrated on studying the "pioneer species" Syntrichia caninervis in an extreme desert environment, according to the institute in an article it sent to the Global Times on Sunday. Through scientific experiments, the researchers systematically proved that the moss can tolerate over 98 percent cell dehydration, survive at temperatures as low as -196 C without dying, withstand over 5000Gy of gamma radiation without perishing, and quickly recover, turn green, and resume growth, showcasing extraordinary resilience. These findings push the boundaries of human knowledge on the tolerance of organisms in extreme environments. Furthermore, the research revealed that under simulated Martian conditions with multiple adversities, Syntrichia caninervis can still survive and regenerate when returned to suitable conditions. This marks the first report of higher plants surviving under simulated Martian conditions. The research team also identified unique characteristics of Syntrichia caninervis. Its overlapping leaves reduce water evaporation, while the white tips of the leaves reflect intense sunlight. Additionally, the innovative "top-down" water absorption mode of the white tips efficiently collects and transports water from the atmosphere. Moreover, the moss can enter a selective metabolic dormancy state in adverse environments and rapidly provide the energy needed for recovery when its surrounding environment improves. Based on the extreme environmental tolerance of Syntrichia caninervis, the research team plans to conduct experiments on spacecraft to monitor the survival response and adaptation capabilities of the species under microgravity and various ionizing radiation adversities. They aim to unravel the physiological and molecular basis of the moss and explore the key life tolerance regulatory mechanisms, laying the foundation for future applications of Syntrichia caninervis in outer space colonization.